yokogawalogo

Cancer Modeling & High-Content Imaging Using 3D Cell-Based Assays

Streamline Tumoroid Handling & Profiling

Physiologically relevant 3D cell models are being adopted for disease modeling, drug discovery and preclinical research due to their functional and architectural similarity to their tissue/sample of origin, especially for oncology research. Multifunctional profiling and assays using 3D cell models such as tumoroids tend to be manual and tedious. Further, high-content imaging of biomarkers in 3D cell models can be difficult.

In this two-part webinar present to you streamlined technologies which can bring consistent timesaving, ease-of-use, and high-quality data to your 3D cell-based workflows:

(A) The Pu·MA System is a microfluidics-based benchtop automated device for performing “hands-off” 3D cell-based assays. In this webinar, application scientist Dr. Katya Nikolov will present data from optimized assays using tumoroids followed by Yokogawa’s high-content imaging systems for biomarker detection.

(B) Yokogawa’s high-content imaging systems such as CellVoyager CQ1 provide superior confocal imaging using the Nipkow Spinning Disk Confocal Technology. Here, application scientist, Dan Collins will present details of the high-content imaging capabilities, easy to use and intuitive image acquisition software, especially for increasing productivity and a streamlined workflow.

Learn How:
  • The open platform, Pu·MA System can be used to automate your 3D cell-based assays
  • To perform automated IF staining for biomarkers using tumoroid models without perturbing your precious samples
  • Image acquisition from 3D cell models using Yokogawa’s high-content imaging platforms
  • Image analysis from cells, complex spheroids, colonies, or tissues using the CellPathfinder high content analysis software

Speaker


Katya Nikolov, MD
Senior Application Scientist,
Protein Fluidics, Inc.

 

 

Dan Collins
Field Applications Scientist, Life Science
Yokogawa

 

 

View Webinar

Fill out the form below to view this on-demand webinar